HEMATOPOIESIS AND STEM CELLS Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation
نویسندگان
چکیده
Adult hematopoietic stem cells (HSCs) are routinely used to reconstitute hematopoiesis after myeloablation; however, transplantation efficacy and multilineage reconstitution can be limited by inadequate HSC number, or poor homing, engraftment, or self-renewal. Here we report that mouse and human HSCs express prostaglandin E2 (PGE2) receptors, and that short-term ex vivo exposure of HSCs to PGE2 enhances their homing, survival, and proliferation, resulting in increased long-term repopulating cell (LTRC) and competitive repopulating unit (CRU) frequency. HSCs pulsed with PGE2 are more competitive, as determined by head-to-head comparison in a competitive transplantation model. Enhanced HSC frequency and competitive advantage is stable and maintained upon serial transplantation, with full multilineage reconstitution. PGE2 increases HSC CXCR4 mRNA and surface expression, enhances their migration to SDF-1 in vitro and homing to bone marrow in vivo, and stimulates HSC entry into and progression through cell cycle. In addition, PGE2 enhances HSC survival, associated with an increase in Survivin mRNA and protein expression and reduction in intracellular active caspase-3. Our results define novel mechanisms of action whereby PGE2 enhances HSC function and supports a strategy to use PGE2 to facilitate hematopoietic transplantation. (Blood. 2009;113: 5444-5455)
منابع مشابه
Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation.
Adult hematopoietic stem cells (HSCs) are routinely used to reconstitute hematopoiesis after myeloablation; however, transplantation efficacy and multilineage reconstitution can be limited by inadequate HSC number, or poor homing, engraftment, or self-renewal. Here we report that mouse and human HSCs express prostaglandin E2 (PGE2) receptors, and that short-term ex vivo exposure of HSCs to PGE2...
متن کاملPleiotropic effects of prostaglandin E2 in hematopoiesis; prostaglandin E2 and other eicosanoids regulate hematopoietic stem and progenitor cell function.
Eicosanoids have been implicated in the physiological regulation of hematopoiesis with pleiotropic effects on hematopoietic stem cells and various classes of lineage restricted progenitor cells. Herein we review the effects of eicosanoids on hematopoiesis, focusing on new findings implicating prostaglandin E(2) in enhancing hematopoietic stem cell engraftment by enhancing stem cell homing, surv...
متن کاملHEMATOPOIESIS AND STEM CELLS Prostaglandin E2 regulates murine hematopoietic stem/progenitor cells directly via EP4 receptor and indirectly through mesenchymal progenitor cells
• PGE2 signaling positively regulates hematopoietic stem cells both directly and via activation of a nonhematopoietic cell population. • EP4 is a major receptor for the PGE2-mediated regulation of hematopoietic stem and progenitor cells. Prostaglandin E2 (PGE2) regulates hematopoietic stem/progenitor cell (HSPC) activity. However, the receptor(s) responsible for PGE2 signaling remains unclear. ...
متن کاملPre-treatment with rapamycin protects hematopoiesis against radiation injury
Background: Protection of hematopoietic system has become a primary goal in the development of novel medical countermeasures against ionization radiation and radiotherapy. This study was to explore the role of rapamycin in normal tissues against radiation. Materials and Methods: Mice were pretreated with rapamycin by i.p. every other day for five times before 5 Gy or 8.5 Gy γ-ray whole bo...
متن کاملNuclear Factor Erythroid 2 Regulates Human HSC Self-Renewal and T Cell Differentiation by Preventing NOTCH1 Activation
Nuclear factor erythroid-derived 2 (NF-E2) has been associated with megakaryocyte maturation and platelet production. Recently, an increased in NF-E2 activity has been implicated in myeloproliferative neoplasms. Here, we investigate the role of NF-E2 in normal human hematopoiesis. Knockdown of NF-E2 in the hematopoietic stem and progenitor cells (HSPCs) not only reduced the formation of megakar...
متن کامل